Normal Equation, Data Fitting, and QR

1 Approximate Solutions of a Matrix Equation.

For the equations $\mathrm{A} \mathbf{x}=\mathbf{b}$ below, write the normal equation and then use it to find the best approximate solution $\hat{\mathbf{x}}$. For extra understanding, check if $\hat{\mathbf{x}}$ is actually also a solution to the original equation.
(a) $\left[\begin{array}{l}2 \\ 3\end{array}\right][x]=\left[\begin{array}{l}4 \\ 6\end{array}\right]$
(c) $\left[\begin{array}{ll}1 & -2 \\ 2 & -4\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}3 \\ 6\end{array}\right]$
(b) $\left[\begin{array}{l}2 \\ 3\end{array}\right][x]=\left[\begin{array}{l}1 \\ 8\end{array}\right]$
(d) $\left[\begin{array}{ll}1 & -2 \\ 2 & -4\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}2 \\ 1\end{array}\right]$
(e) $\left[\begin{array}{rr}1 & 0 \\ 1 & -1 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
(f) $\left[\begin{array}{rr}1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{r}-1 \\ 2 \\ 0 \\ 1\end{array}\right]$

2 Least Squares Data Fitting Using the Normal EqUation.

For the following data sets and the function $f(t)$,
(i) write a matrix equation $A \mathbf{x}=\mathbf{b}$ to compute the coefficients of $f(t)$,
(ii) write the associated normal equation $A^{\mathrm{T}} A \hat{\mathbf{x}}=A^{\mathrm{T}} \mathbf{b}$,
(iii) solve for the best approximate solution for the coefficients of $f(t)$ and write $\hat{f}(t)$
(a) $f(t)=a$

t	-1	0	1	2
$f(t)$	-3	-1	1	0

(b) $f(t)=b t$ | t | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: |
| $f(t)$ | -3 | -1 | 1 | 0 |

(c) $f(t)=a+b t$

t	-1	0	1	2
$f(t)$	-3	-1	1	0

(d) $f(t)=a+b t^{2}$

t	-1	0	1	2
$f(t)$	-3	1	1	-1

(e) $f(t)=a+{ }^{b} / t$

t	$1 / 3$	$1 / 2$	1
$f(t)$	3	0	-6

(f) $f(t)=a \cos (t)+b \cos (2 t)$

t	0	$\pi / 2$	π	$3 \pi / 2$
$f(t)$	1	-1	3	2

3 Using Scaled QR-Decomposition

Use the scaled QR-decompositions given below to solve.
(a) $\left[\begin{array}{rrr}2 & 1 & -2 \\ 1 & 2 & 2 \\ 2 & -2 & 1\end{array}\right]\left[\begin{array}{rrr}1 & 1 & -1 \\ 0 & 2 & 1 \\ 0 & 0 & 3\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}-3 \\ 9 \\ 3\end{array}\right]$
(b) $\left[\begin{array}{rrr}2 & 1 & 4 \\ 1 & 1 & -5 \\ -3 & 1 & 1\end{array}\right]\left[\begin{array}{rrr}2 & 2 & -3 \\ 0 & 2 & -4 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}1 \\ 8 \\ -2\end{array}\right]$
(c) $\left[\begin{array}{rrr}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1\end{array}\right]\left[\begin{array}{rrr}1 & 2 & -3 \\ 0 & 2 & -1 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}3 \\ 5 \\ 1 \\ -1\end{array}\right]$
(d) $\left[\begin{array}{rrr}1 & 1 & 1 \\ 1 & 1 & -1 \\ 2 & -2 & 0 \\ 2 & 1 & 0\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}4 \\ 0 \\ 8 \\ 5\end{array}\right]$

4 Computing Scaled QR-Decomposition

Compute a scaled QR decompositions for the matrices below.
(a) $\left[\begin{array}{rrr}1 & 2 & 3 \\ 1 & 0 & -9 \\ 2 & 5 & -3\end{array}\right]$
(b) $\left[\begin{array}{rrr}1 & -1 & 8 \\ 2 & -7 & 6 \\ 2 & -6 & -1\end{array}\right]$
(c) $\left[\begin{array}{rrr}2 & -8 & 11 \\ 3 & 7 & -3 \\ -5 & 1 & -5\end{array}\right]$
(d) $\left[\begin{array}{rrr}-9 & -7 & 8 \\ 7 & 10 & -9 \\ 1 & -2 & 4\end{array}\right]$
(e) $\left[\begin{array}{rrr}1 & 5 & 4 \\ 1 & -1 & -10 \\ 1 & 5 & 0 \\ 1 & 3 & -2\end{array}\right]$
(f) $\left[\begin{array}{lll}1 & 4 & 0 \\ 1 & 3 & 3 \\ 1 & 2 & 4 \\ 1 & 3 & 1\end{array}\right]$
(g) $\left[\begin{array}{rrr}1 & 5 & -7 \\ 1 & 7 & 7 \\ 2 & 7 & -5 \\ 2 & 7 & -5\end{array}\right]$
(h) $\left[\begin{array}{rrr}1 & -1 & 5 \\ 2 & -7 & 1 \\ 2 & -4 & 9 \\ 2 & -8 & -6\end{array}\right]$

- Recall that transpose in MatLab is '. To solve the normal equation it is fastest enter A and b first and then use the $\operatorname{command}\left(\mathrm{A}^{\prime} * \mathrm{~A}\right) \backslash\left(\mathrm{A}^{\prime} * \mathrm{~b}\right)$ to divide $A^{\mathrm{T}} A \hat{\mathbf{x}}=A^{\mathrm{T}} \mathbf{b}$.
Example. Find the best approximate solution to the matrix equation $\left[\begin{array}{rr}1 & -1 \\ 1 & 0 \\ 2 & 3 \\ -1 & 5\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{r}-1 \\ 7 \\ -2 \\ 3\end{array}\right]$

```
>> A = [1 -1; 1 0; 2 3; -1 5]
>> b = [-1; 7; -2; 3]
>> x_hat = (A' * A) \ (A' * b)
```

In this case the error vector is given by

```
>> e b - A * x_hat
```

with squared error
5

```
>> e ' * e
```

- It is slightly faster to enter column vectors into MatLab as transposes of row vectors. The same trick works for matrices that don't have many columns. For example lines 1 and 2 above could be replaced by

```
>> A = [1 1 2 -1; -1 0 3 5]'' % A = [1 -1; 1 0; 2 3; - 1 5]
```


- To solve data fitting problems using MatLab, we first enter the independent variable t, then we build the matrix A, column by column, plugging t into the terms multiplied by unknown constants.

Example. Fit the formula $f(t)=a+b t+c t^{2}$ to the data | t | -1 | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(t)$ | -3 | 1 | 1 | -1 | -6 | -8 |

```
>> t = [l-1 0
>> A = [t.^0 t. ^1 t. ^2]
>> f}=[\begin{array}{llllll}{-3}&{1}&{1}&{-1}&{-6}&{-8}\end{array}]
>> coeff = (A' * A) \ (A' * f) % normal eqn for A * coeff = f
```

Line 7 uses $t . \wedge 2$ instead of $t \wedge 2$ to tell MatLab to square t element-wise rather than square t as a matrix. Without the . MatLab would have returned an error, since you cannot multiply two 6x1 matrices.

- MatLab has a command qr which gives the (unscaled) QR-decomposition. The (unscaled) QR decomposition differs from our version by insisting that all columns of Q have length 1. In practice this means dividing each column of Q by its length and multiplying the corresponding rows of R by this length.

We can write MatLab code to compute scaled QR decomposition using a for loop to build Q column by column. Begin with $Q=$ first column of A, and then convert the other columns of A to be columns of Q by computing error vectors for the approximate solution to $\mathrm{Qx}=($ next column of A$)$.

Example. Compute the scaled QR decomposition of $A=\left[\begin{array}{rrr}1 & 4 & 11 \\ 2 & 6 & -9 \\ 2 & 1 & -10\end{array}\right]$.

```
>> A = [1 4 11; 2 6 -9; 2 1 -10]
>> Q = A(:,1) % Begin with Q = col 1 of A
>> R = [1 0 0; 0 1 0; 0 0 1] % Begin with R = identity matrix
>> for (col = 2:size(A,2)) % Loop over columns of A
    x_hat = (Q' * Q) \ (Q' * A(:,col)) % Normal eqn for Q x = (next col)
    e = A(:,col) - Q * x_hat % Error vector for x_hat
    Q = [Q e] % Error vector is next col of Q
    R(1:col,col) = x_hat % x_hat is next col of R
    end
% End of loop
```

Line 13 uses the command size $(A, 2)$ to get the number of columns of A. The command $\operatorname{size}(A, 1)$ gives the number of rows of A, and the command size (A) gives the number of rows and columns.

